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1. Introduction 

Algorithms are familiar to most people: they can play a part in almost all of the tasks in daily life, to 

varying degrees. However, to attempt locking down a definition of an algorithm can prove 

problematic for multiple reasons. Firstly, if algorithms can take any number of forms and accomplish 

any number of tasks, then the definition that remains to unite them will be one that is extremely 

general or vague, and thus of little use. Secondly, if we are to look to the algorithm’s origins in 

mathematics and computer science for a definition, we quickly become overwhelmed with 

unfamiliar notation that bears little resemblance to how we interact with the algorithmic process, 

and would be akin to learning a new language in order to make this notation become clear.  

This short paper will attempt to navigate between these two issues to clarify the general properties 

of algorithms and their uses in digital processes. I will avoid venturing too far into the domains of 

mathematics and computer science, but when I do so, I shall attempt to provide a clear explanation 

fit for a general audience. The paper will be divided into three main sections. In section one I will 

attempt to explain what an algorithm is and through an example, explore its applicability and 

usefulness in undertaking tasks. Section two will give a brief history of the algorithm and how the 

objective of various mathematicians and philosophers to provide a language or system which is able 

to algorithmically complete any given task, and the various limits and issues raised in doing so. The 

third section will look at how algorithms are used in contemporary practices, and the conceptual 

leap that is required between understanding the mathematics of the algorithm, to how they operate 

and are interacted with in practice. 

 

2.1 The Foundations of the Algorithm 

An algorithm is – to use the most general of definitions – a step-by-step process used to accomplish 

a particular task. For example, if I wished to accomplish the task of reading a book. There are a 

number of steps I would have to take in order to accomplish this task: I would have to pick up the 

book, then open the cover, then read the first page, then turn the page, then read the second page, 

and so on until the end of the book, when I can close it. Figure 1 provides a clearer picture of this 

task. 



 

 

Figure 1. The ‘algorithm’ for reading a book. 

Let us compare this figure with the definition given above: the task to be accomplished in this case is 

the reading of a book. The process of doing so is achieved step-by-step: we begin by reading the first 

page, then, the second, and so on (“…” is the symbol often used that denotes this phrase) until we 

reach the final page, at which point the task of reading the book is accomplished. This is a very basic 

algorithm, but one which has succeeded in moving from state A (wanting to read the book) to state 

B (finished reading the book). It is a set of instructions that can easily be followed by anyone wanting 

to accomplish this task. 

 



2.2 Multiple Uses of an Algorithm 

To re-iterate: In its most general sense, an algorithm is a set of instructions that are able to 

accomplish a task. Anyone that can follow the algorithm’s instructions can accomplish the task. If we 

were to hand someone the book used in the previous example, alongside the algorithmic 

instructions shown in figure 1, providing they could read the instructions and understand them, they 

should be able to complete the task easily. This is a key aspect of digital algorithms also: if I create a 

file on one computer that can be opened or read, then if I give that file to another computer to open 

up, it should be able to follow the same instructions and read the file the exact same way.1 We do 

not need to rebuild the algorithm each time it is given to another use or computer to undertake. 

We now have a conception of the algorithm that we can start building upon. The algorithms 

described thus far are able to accomplish one single task, as long as the user or computer can read 

the instructions. Algorithms are, however, of very limited use if they can only accomplish a single 

task and then become redundant when it is achieved. The algorithm for reading our book serves its 

purpose well, but what if we wanted an algorithm that could be used to read multiple books? How 

would we prepare an algorithm in advance that can read books it has not seen? This is achieved by 

making sure our objects (or books) are well-defined; meaning that while each object may differ in 

some respect, these differences do not alter the object itself (the book does not become a car, for 

example). Different books will have a different amount of pages, but all of them will have pages. The 

number of pages will be a variable which alters how the algorithm will carry out its task. This means 

that any book, no matter how many pages it has, will work with the algorithm. The next step is to 

make sure that the algorithm is well-defined: that its instructions cannot be misinterpreted no 

matter the values of these variables, and that the algorithm can complete the task. Figure 2 shows 

how such an algorithm may be constructed. 

  

                                                           
1 The two computers must obviously have the necessary software or be operating in the same language at 
some level, but this point will be addressed in more detail later. 



 

Figure 2. Algorithm for reading a book with any number of pages. 

For this example, a variable x is being used to denote the number of pages in a book. In the above 

paragraph, we mentioned how every book may have a different number of pages, but all of them 

will have pages, so no matter what the number of pages in a book, it will still be a book. For 

example, if I have a book that is twenty pages, I let x = 20, and then replacing x in the instructions 

given, I would read twenty pages before I close the book. Now I do not have to give somebody a 

book along with the algorithm: I could take them to a library and ask them to pick out any book they 

wished, and as long as they follow the instructions by substituting x for the number of pages in the 

book, they choose, the algorithm will accomplish its task. 

These two examples show the potential in constructing algorithms to solve problems and complete 

tasks. In doing so, however, we have overlooked the difficulties that are involved in constructing an 

algorithm whose instructions can be unambiguously interpreted and followed without error. In 

giving instructions for reading books, one can run into problems such as: 

 What if the person undertaking the task cannot read or know what is means ‘to read’? 

 What if they cannot read the language the book is written in? 

 What do they do if there are images? How do they ‘read’ an image? 

Of course, our algorithm can overcome these problems by adding in additional instructions to solve 

them. For example, if a book is chosen that is written in a language the reader cannot read, then 

they should choose another book.2 There is theoretically no limit to the enhancements we could 

make to this algorithm to incorporate a solution to every foreseeable problem, but if our reader had 

                                                           
2 These types of arguments that are composed of “if…then…” are conditional arguments. 



to undertake an algorithm that had hundreds or thousands of steps just to check if it was a book 

they could read, then the task would take such a long time that it would not be worthwhile doing, or 

may never complete at all.3 These problems relate to how the instructions themselves are read, and 

that the words, instructions and commands that comprise the languages we use every day can have 

multiple meanings depending on context, or may change over time. Ideally, our algorithms would be 

written in a language that could not be misinterpreted, and the functions of the words it used never 

changed: if a reader were to learn this language, they could perform the algorithms written in that 

language without any chance of error, and the language would be fixed regardless of context. At this 

point, we shall now turn to the work of the philosophers who undertook this task, and how their 

attempts at constructing such a language met with varying levels of success. 

  

3.1 The Search for a Universal Language  

The traditional task of Western philosophers throughout history generally involves devising a logic or 

system through which existence and the true nature of things can be explained. Such philosophy is 

the most general of enquiries, in that it pertains to all things, but also the most in depth, by 

penetrating to their core truth. Of particular interest are the philosopher’s that attempted to build a 

universal language, through which all truths could be expressed and calculated without error.4 On 

this subject, Descartes wrote a letter in 1629 expressing interest in the idea of a universal language, 

and how one may be developed. He suggests that such a language would be entirely possible:  

Order is what is needed: all the thoughts which can come into a human mind must be arranged in an 

order like the natural order of the numbers. In a single day one can learn to name every one of the 

infinite series of numbers, and thus to write many different words in an unknown language. The same 

could be done for all the other words necessary to express all the other things which fall into the 

purview of the human mind.5 

Descartes’ here is using the example of numbers to support the idea that a universal language exists: 

no matter how numbers are said in many different languages, they all refer to the same numbers, 

and many use the same symbols (1, 2, 3 etc.). If numbers are universal in this way, then Descartes 

                                                           
3 Imagine, for example, if instruction A told the reader to proceed to instruction B, which in turn told the 
reader to proceed to instruction A, which lead to B, and so on. The reader would be caught in a loop that 
render them unable to proceed with the task. 
4 The term ‘universal’ here means that a proposition (or language) is true regardless or time, space or 
circumstance: no matter where (or when) in the universe such a statement is made, it would be universal if 
that statement remained true and was not affected in any way. 
5 René Descartes, “To Marsenne, 20 November 1629” in The Philosophical Writings of Descartes Volume III: 
The Correspondence, trans. John Cottingham et al. (Cambridge: Cambridge University Press, 1991), 12 



surmises that words would be too. He recognised that a true universal language must be able to 

express clearly the simplest ideas of the human mind, but this is something he did not feel he 

wanted to do.6 Descartes furthermore remarks that while it is possible that such a universal language 

could exist in the way here described, he would not want it to see it ever used. Saying that “For that, 

the order of nature would have to change so much that the world would be turned into a terrestrial 

paradise; and that is too much to suggest outside of fairyland.”7 Descartes would seem to recognise 

that the languages that are used by people and their ambiguities are too much ingrained in the 

world, and that such a seismic shift is unrealistic.8 

Descartes also states that “The greatest advantage of such a language would be the assistance it 

would give to men’s judgment, representing matters so clearly that it would be almost impossible to 

go wrong.”9 As a consequence, the ambiguity of language would all but disappear, and algorithms 

that employed this language would not run afoul of misinterpretation as long as it is used correctly. 

Following Descartes, the philosopher and mathematician Leibniz pursued this idea with much more 

fervour, and providing what I would argue is the first example of a computational philosophy. In a 

1685 letter, Leibniz discusses the method he has discovered by which “…we can represent all truths 

and consequences by Numbers.”10 Such a language encodes these “truths and consequences” into 

numbers or symbols, which in turn carry out these operations on their own, like a machine or 

computer, which is what Leibniz believes will be the outcome of such a process: 

The only way to rectify our reasonings is to make them as tangible as those of the Mathematicians, so 

that we can find our error at a glance, and when there are disputes among persons, we can simply 

say: Let us calculate, without further ado, in order to see who is right. 

If words were constructed according to a device that I see possible, but which those who have built 

universal languages have not discovered, we could arrive at the desired result by means of words 

themselves, a feat which would be of incredible utility to human life.11 

                                                           
6 Ibid., 13. 
7 Ibid. 
8 As will be shown below, fellow philosopher Leibniz would have no quarrel pursuing this course with such 
optimism. 
9 Ibid. 
10 G.W. Leibniz, “The Art of Discovery” in Leibniz: Selections, ed. Philip P.Wiener (New York: Charles Scribner’s 
Sons, 1951), 50. Leibniz is here referring to his Dissertation of the Art of Combinations, one of his first works in 
which he attempts to develop a universal language based on numbers, developing proofs including one for the 
existence of God. See G.W. Leibniz, “Dissertation on the Arts of Combinations” in Philosophical Papers and 
Letters, 2nd ed., ed. and trans. Leroy E. Loemker (Dordrecht/Boston/London: Kluwer Academic Publishers, 
1989), 73-84 
11 Leibniz, “The Art of Discovery”, 51-52 



What sort of “device” is Leibniz imagining? Picture this scene: a dispute has arisen between two 

parties, and they cannot agree on which one of them is right. They are at an impasse, and so turn to 

Leibniz’s “device” to provide the answer. They enter all of the variables and symbols, and the device 

undertakes the operations encoded within the symbols step-by-step to resolve the dispute. A 

universal language, for Leibniz, would be able to resolve any dispute as long as all the variables are 

input into the device, and would also provide an answer free from the vested interests of either 

party. This device calculates its response algorithmically, following the instructions of the universal 

language, and the symbols that are a part of it, anyone can input their queries or variables and 

receive an answer. It is not difficult to see how Leibniz’s conception of such a device is comparable 

to the modern digital computer in terms of how it may be used to solve all sorts of problems 

depending on its programming. Leibniz’s belief that every problem could be solved algorithmically 

via such a universal language (or universal machine) required laying down foundations that – in the 

spirit of universality – would be applicable and avoid contradiction no matter when or where they 

were used.12 How does one know that there are no contradictions in its rules, or that something 

unexpected may emerge in the future that cannot be encoded or computed in this language? In 

terms of the example used in the previous section: one can construct an algorithm that accounts for 

every possible contingency, or every type of book in every language so that the instructions can be 

followed, but will someone in the future be able to make a book that cannot be read using these 

comprehensive set of instructions? 

 

3.2 Completeness (Incompleteness) 

In order for a universal language to be qualified as such it must meet two qualifications: it must be 

complete, by which is meant that there are not and will not be any new statements, or propositions 

that cannot be expressed or constructed within. It must also be consistent, in the sense that no two 

statements or propositions contradict each other.13 Producing a language or formal system that 

meets these two qualifications, and can prove it, is a task that has pre-occupied a number of 

philosophers and mathematicians since Leibniz. The task of this paper is not to chronicle this history, 

                                                           
12 Leibniz outlined a basis for such a universal language by constructing a system through which every number 
would be represented through a combination of zeroes and ones: the binary or base-two number systems 
used in digital computers. See G.W. Leibniz, Explanation of Binary Arithmetic, trans. Lloyd Strickland, accessed 
4 April 2019 http://www.leibniz-translations.com/binary.htm  
13 For example, a language cannot be able to prove that both x = 1, and x = 2, as this would be a contradiction, 
and both cannot be true.   



but to position the landmarks of this development and how they relate to the effectiveness, 

applicability and limitations of the algorithm.14 

In order to construct a complete and non-contradictory system, it must be able to handle any 

content or function that wishes to be fed into it, as well provide a unique result or output in 

response for it. The difficulty with numbers is that they can mean a lot of different things: the 

number “2” could relate to “2 chairs”, “2 apples” etc. and the number “2” could be broken down and 

used in a number of ways. The solution to this is to remove meaning from the system, leaving it a 

functional machine in the way Leibniz envisioned, and the symbols of the machine’s language are 

parts of this machine that perform their function without them needing to mean anything.15 In order 

to overcome this ambiguity in numbers, Georg Cantor developed a system that replaced the use of 

numbers with sets. A set essentially replaces the use of numbers in a purely logic-based system. For 

example, if I wanted to perform an operation using all the odd numbers, I would run into a problem 

insofar as there are an infinite number of them, and it would be impossible for the system to go 

through an infinite quantity, and would thus never complete its operation. Likewise, the issue of our 

‘book’ algorithm cannot guarantee to function with every book unless we program each book that 

has or will existed; another impossible task. Instead we can perform our operations on sets: the set 

of all odd numbers contains an infinite sequence, but it is a single object defined in a universal 

language or system that can be manipulated and operated on without having to deal with its 

contained infinity. 

This explanation of sets barely scratches the surface of this significant mathematical shift, but 

delving any deeper will quickly overwhelm us in mathematics, which at the outset I declared would 

be avoided. Let us consider this significance in terms of its impact on the effectiveness of 

constructing algorithms. As has been shown, the ‘book’ algorithm works perfectly well if we have a 

book at hand and we can adjust the variables (number of pages) to accommodate said book. We did 

however, find limitations regarding how effective the algorithm would be with regards to different 

types of books and the potentially infinite variables that one could encounter in picking a book at 

random from a library. If we replace the book in our algorithm with the set of all books, then 

                                                           
14 This history, as well as its relation to the development of the digital computer are most succinctly and 
accessibly detailed in the individual chapters of Martin Davis, The Universal Computer: The Road from Leibniz 
to Turing (New York/London: W.W. Norton & Company, 2000)  
15 This can be a little difficult to comprehend. Consider the act of switching on a light through the use of a 
button: The act of pressing a button does not mean anything, the electricity passing through the circuit does 
not mean anything, and the light switching on does not mean anything. Each component of this ‘system’ could 
be considered a symbol that when activated performs its function, but it doesn’t mean anything when it does. 
Meaning can be attributed to these symbols or components, but it would not alter or interfere with the 
operations of the system itself. 



anything that is classified as a book will belong in that set, and the algorithm will be able to operate 

with any of the objects contained therein. Returning to a point made in the first section, the set 

must be well-defined, so in this system there must be a certain criteria that an object must meet to 

be classified as a book. We are reaching the limits for the usefulness of this example as we head 

deeper into the concepts of mathematics which do not translate easily into practical examples, but 

the concepts of sets are an example of how an algorithm can be used in circumstances where 

variations can be infinite in some capacity, such as the set of odd numbers described above, but still 

accomplish a function or task that accounts for these variations. 

The culmination of this task to create a complete, consistent system came about through the work 

of Bertrand Russell and Albert North Whitehead, whose three-volume Principia Mathematica 

claimed to have fulfilled the task of completeness and consistency through which all mathematical 

proofs could be expressed.16 It is a monumental system that carefully avoids the paradoxes that 

have plagued mathematicians before them, most notably Russell’s paradox, which is: 

Does the set of all sets that does not contain itself contain itself? 

And is often characterised in the following way: 

The barber of Seville shaves everyone in the town that does not shave themselves. Does the 

barber shave himself? 

Let us explain using the latter example. If the barber does not shave himself, that means he – as the 

barber who shaves everyone who doesn’t shave themselves – must then shave himself, but that also 

means that if he shaves himself, then he – as the barber – does not have to shave himself…and so it 

goes around in this fashion forever.17 If this were an algorithm, then it would never complete its task 

(answering the question) because it would get caught in an infinite loop following its own 

instructions. The solution to this in Principia Mathematica is to define types of sets, and limiting the 

interactions between different types: essentially, the barber cannot also be a resident of Seville. 

The biggest blow to Pirincipia Mathematica came from the mind of Kurt Gödel, whose 

incompleteness theorem showed that not only did a paradox exist in this system, but that any logical 

system that attempted to be both a consistent and complete account of mathematics would have 

                                                           
16 Albert North Whitehead, Bertrand Russell, Principia Mathematica: Volume I, 2nd edition (Cambridge: 
University Press, 1968) 
17 Explained using the former statement, if the “set of all sets that do not contain themselves” (the barber) 
does contain itself, then it cannot contain itself, which would then mean that it would have to contain itself 
etc.  



the same paradox within it.18 Alan Turing similarly showed the limits of such systems in his halting 

problem, which proved that it was impossible to construct a system which could determine whether 

all statements would be computable (would reach the end of their calculation) independent or in 

advance of their being computed.19 

The search for a universal language or system that can express all statements of mathematics 

without error or inconsistency thus runs into a seemingly unsurmountable problem, and with it, the 

algorithms built with them will possess inherent limits with regards to what they can or cannot 

accomplish. With this in mind, Turing focused not on trying to surmount this problem, but having 

recognised the limits independent of these systems being put into practice, he focused on how these 

algorithms would have to work within the various practices or tasks in which it was deployed. 

Returning to the conundrum outlined in the introduction, we are faced with an almost limitless array 

of these practices, each with their own rules and limits and quirks which an algorithm must account 

for in its instructions or programming to ‘fit in’ and contribute those practices or tasks. Although the 

concept of a universal language has its limits as shown in this section, it is not without merit: such 

languages are capable of working with a large number of processes and information, as evidenced 

by the versatility of the digital computer in accomplishing countless tasks depending on its 

programming. With this in mind, this paper, in searching for a definition of an algorithm, will have to 

combine the effectiveness of a universal language combined with the ability to engage with specific 

practices. 

 

4.1 The Ongoing Task of the Algorithm 

What makes Alan Turing so influential is not just because his work in symbolic logic and mathematics 

made the modern digital computer possible, but that he considered how his universal machine could 

be programmed to accomplish many different tasks: just one computer that can be programmed in 

an infinite number of ways. It is a testament to his forward thinking that he envisioned how 

                                                           
18 See Kurt Gödel, On Formally Undecidable Propositions of Principia Mathematica and Related Systems, trans. 
Brian Meltzer (New York: Dover Publications, 1992). Gödel’s proofs (of which there are three) are complex, 
and require an understanding of Principia Mathematica’s operation and notation in order to understand, 
which is beyond the scope of this paper. Essentially, it involves constructing a statement using the systems 
rules and symbols that says something akin to “this statement cannot be proved in Principia Mathematica”.  
19 Alan Turing, “On Computable Numbers, with an Application to the Entscheidungsproblem” in The Essential 
Turing: Seminal Writings in Computing, Logic, Philosophy, Artificial Intelligence, and Artificial Life: Plus The 
Secrets of Enigma, ed. B. Jack Copeland (Oxford: Oxford University Press, 2004), 58-90 
 



computers would find use in an array of practices and processes, and his work is still relevant even 

today. 

We have in previous sections focused on the algorithm as a process of completing any given task. 

Once the algorithm completes this task, the algorithm halts. The computer as a calculation machine 

also works in this way: when it finishes calculating, it can stop. But some tasks do not simply have an 

end: they are ongoing, with no determined end-point or destination. For example, if one has an 

algorithm used for monitoring the weather, there is no determinate point at which the weather 

ends. If, however, I want to know the state of the weather now, or for a day, a week etc. I can 

program an algorithm that can accomplish this by performing a check on the weather at the current 

time, and at regular intervals depending on the length of time and frequency I wanted to check. The 

term real-time is often used to describe processes that are taking place in the present moment, so if 

I wanted to see the weather change in real-time, I would program an algorithm that would 

constantly check weather data and would notify me of any changes. Next, consider how I would 

attain an appropriate definition of what constitutes “weather”: I could monitor satellite imagery of 

cloud movements, wind speeds, humidity and so on. All of these are separate tasks or algorithms 

that may combined to give a more comprehensive and accurate account of the weather. 

The starting definition for an algorithm set out in the beginning of this paper consisted of a task to 

be accomplished through a set of finite steps. The example of measuring or calculating the weather 

above complicates this definition through the means by which it works in practice. The real-time task 

of checking the status of the weather is – in one sense – a task that cannot be accomplished, 

because the weather is always changing. Next, the various processes involved in checking the 

weather do not proceed step-by-step: they work simultaneously or in parallel, so one machine may 

be monitoring the wind speed while another will be measuring the humidity, and this parallel 

processing cannot be adequately defined as a step-by-step process because neither one necessarily 

needs to come before the other, and if they are not carried out at the same time, they will combine 

to give an inaccurate output (in this case a weather report).20 Algorithms are used in many such tasks 

in order to monitor conditions, changes, and to keep people up to date with them in contemporary 

life, where many objects and artefacts have a digital dimension that can connect them to other 

                                                           
20 In the case of weather checking, a small delay would not prove damaging to the accuracy of the output, as 
the weather will not shift significantly in the small gap between finding one measurement, then finding 
another, but there are examples where such a delay would prove costly, such as in algorithms used in the 
stock-markets and trading. In addition to this, there is no universal solution to deciding which measurement 
would be taken first. In some cases, a measurement that changes slowly would be calculated first as the 
intervening time between that calculation and finishing the task would mean there would be little change in a 
slow changing variable, but if a quickly changing variable requires an excessive amount of computation, it may 
be preferable to calculate it first. 



digital devices. In many of these cases, we do not need to see that the algorithm is working, and in 

fact never do, as the almost instantaneous completion of task gives no time for consideration into 

how it is being achieved, or how defining this algorithm would benefit those that use them. If we are 

to answer the question “what is an algorithm?” we must continue by making time to consider the 

effects it has, and how it accomplishes its task. 

 

4.2 Who Should Care About the Algorithm? (or, A Call for Transparency?) 

Turing’s conception of a universal machine (computer) was a device that, when delivered any finite 

input, it would be able to provide an output; as the machine would have all the necessary 

programming within it to complete the calculations. Furthermore, Turing’s profound conception was 

that this machine could be programmed to have multiple computers within itself, which would allow 

the completion of tasks such as the weather checking example, which requires the computer to 

accomplish several tasks in real-time.21 As long as there is an input and an output, the algorithm, can 

situate itself in between them in order to facilitate the transition from one state to the other, as 

shown in figure 3. 

 

Figure 3. Diagram showing the basic process of computation. An input exists in one state, and is transformed 

by the algorithm to the output. 

The algorithm exists in this process in order to transform input to output. In many uses and 

practices, the algorithm does not need to be understood by its user, only for it to carry out its task 

                                                           
21 But as mentioned in the previous footnote, the complexities of the specific practices it is engaging with will 
require an algorithm to be programmed to provide the most accurate and effective output.  



successfully: if I want to know the current weather, I do not need to see all the calculations the 

algorithm is made, or how it is done. The term black-box is often used to describe such a system, in 

which the algorithmic process is completely interiorised and out of sight: it does not contribute to or 

affect the task in any way, only providing the machine equipment (in the form of code and 

programming) to carry it out. Framed in this way, the algorithm becomes meaningful exclusively to 

the computer scientists and software engineers, who alone possess the specialist knowledge 

required to open up the black box and to tinker with the algorithm’s components. To ask such a 

person “what is an algorithm?” they may answer using the language of the computer scientist, the 

logician, or the mathematician; the languages of the specialist, and their own task of making 

algorithms as effective and efficient as possible. Their definition, however, will not be meaningful to 

those without this knowledge, but still use and interact with algorithms on a daily basis just fine 

without this knowledge. This is not to disparage the work of the computer scientist, and certainly 

their work is vital to the success of algorithms incorporating themselves into the various facets of 

everyday life, but this search for meaning in foundations – as shown above in the search for the 

universal language – is at best an incomplete picture, and at least part of its meaning must be found 

within the practices within which it is embedded. 

As mentioned above, in using digital processes to accomplish tasks, such as checking the weather, 

one does not need to know the inner workings of the algorithm, the logical syntax, or the 

programming language in which it was written: as long as it accomplishes its task successfully and 

without minimal disruption, one need not give the algorithm much thought. Indeed, even if one 

wanted to, the algorithm’s process is designed to be as efficient, fast, and transparent as possible, 

thus obscuring how it is accomplishing this task, and the cost or consequences of its output. From an 

ethical standpoint, these costs may involve the user giving their personal details, and thus intruding 

on their privacy, with their details being used for purposes for which they did not give their consent. 

Users can also find themselves part of larger algorithms and contributing to ‘outputs’ they would not 

agree to if they were aware of their operation. 

The transparency of the algorithm must be twofold: in order to be a useful and efficient participant 

in practices, it must fulfil its task without interfering or distracting from said task. Alongside this, 

there must also be transparency in how the algorithm is operating and accomplishing its task: what 

data it is using to complete the task, where the data came from and how it was acquired etc. These 

two aspects of transparency seemingly run contrary to one another, and when one is rendered more 

transparent, it interrupts the other. However, it is not as simple as lifting the black box to reveal the 

workings underneath, as Seaver states: 



At their most simple, calls for transparency assume that somebody already knows what we want to 

know, and they just need to share their knowledge. If we are concerned about Google’s ranking 

algorithm for its search results, presumably that knowledge exists inside of Google […]. While 

transparency may provide a useful starting point for interventions, it does not solve the problem for 

knowing algorithms, because not everything we want to know is already known by someone on the 

inside.22 

If the process of transparency is a process of seeking the ‘source’ from when the algorithm sprung, 

then, Seaver highlights, one may actually find no source: an algorithm can be made through the 

combination of multiple people, departments or companies, none of which can offer a definitive 

source or foundation, or even have had any communication with one another. Furthermore, an 

algorithm does not simply mirror the wishes of its creator(s): when put into practice, analysing data 

its creators have never seen, those practices belong to the algorithm itself, and take on a life of their 

own. Again we can return to Turing and Gödel’s findings above, which highlighted the inherent limits 

of systems independent of the practices within which they are deployed: it is the various dimensions 

of practice that the algorithm recognises and adapts to that allows it to both distinguish itself from 

its creators, while also embedding itself in the practices it is engaged in.23 Transparency such as that 

which Seaver mentions ignores the agency and actions of the algorithm as if it is not there, instead 

going after those which created it as having all the answers. 

The algorithm must be acknowledged within the practices it is embedded in. Algorithms that are 

constantly monitoring and altering various processes in the world, such as checking the weather, 

have an effect on people’s responses or activities, and if these processes entail an ongoing, never-

ending engagement, then one cannot simply wait until the weather (for example) finishes to assess 

the algorithm’s effectiveness and its effect on those who engage with it. This interaction and critique 

must take place alongside the running of the algorithm as an active participant in a practice, with its 

decisions and biases able to be accessed and assessed just as any other participant.24 If an algorithm 

is doing harm to other participants, or is incorrectly producing results, the means should be available 

to change this, or provide new data for the algorithm to learn from. Algorithms have a direct impact 

                                                           
22 Nick Seaver, “Knowing Algorithms” (2014): 
https://static1.squarespace.com/static/55eb004ee4b0518639d59d9b/t/55ece1bfe4b030b2e8302e1e/144158
7647177/seaverMiT8.pdf 
23 This issue of adaptability is more significant for complex algorithms that are self-correcting, or modify their 
own behaviour based on what results they produce. But even for more simple algorithms, there may be a 
number of different algorithms that can accomplish a task, and how effectively or quickly they do so can alter 
the outcome to various degrees, and so even the most simple of algorithms may vary depending on these 
various dimensions of practice (computer hardware, amount of data, who interacts with it etc.). 
24 It is important, however, to resist the temptation to humanise the algorithm, and to judge it by its ability to 
grasp a task in the way a human would. 



on those that use or interact with them, and it is important to remember that its outputs may 

present a biased or incomplete picture of the task it has undertaken. 

For those that use an algorithms to accomplish a task, having the means to access how the algorithm 

has arrived at its output allows them to grasp at the algorithm itself, as an entity or participant in 

itself, and the possibilities and prejudices it can bring to a task or practice. With this conception of 

the algorithm as something that does not need to be transparent, but is able to be navigated into 

and around when it is necessary, one can navigate all sorts of algorithms by identifying the various 

features and processes that are common across them. To conceptualise this, we shall return once 

more to the work of Turing for one of his most famous examples.  

 

4.3 The Interrogation Game 

The interrogation game (also known as the imitation game) is a theoretical scenario used by Turing 

to show how a computer should be afforded the same status as a non-computer if they can both 

perform the same task without someone being able to tell them apart based on the output of that 

task.25 In Turing’s example, he imagines a game in which a human and computer, A and B, are given 

a question to respond to, and for a judge, C, to determine which participant is the computer and 

which is the human based on the responses they give. If C is unable to tell which responses belong to 

which participant, then both must be considered as thinking. This is because when a human gives a 

response to a question, we presuppose that they have arrived at that answer through thinking. If a 

computer arrives at a response, we presuppose that it has done so by calculating a response. If a 

judge cannot decide which response was produced by the thinking participant, then both responses 

must be classed as coming from thinking entities until a further response distinguishes the two.26 

Turing’s game serves as a warning against pre-judging a participant based solely on their identity as 

human or computer etc., and instead they should be judged on their responses to situations, and 

their contributions made through those responses. Such a position warns against discriminating 

                                                           
25 Alan Turing, “Computing Machinery and Intelligence” in The Essential Turing: Seminal Writings in Computing, 
Logic, Philosophy, Artificial Intelligence, and Artificial Life: Plus The Secrets of Enigma, ed. B. Jack Copeland 
(Oxford: Oxford University Press, 2004), 433-464. This paper will use ‘interrogation game’ in keeping with 
Turing’s original term over ‘imitation game’, which also highlights the role of questioning and engagement 
present in the term ‘interrogation’. 
26 Of course this argument could reverse: if the judge cannot distinguish between A and B, then then can both 
be considered calculating rather than thinking. However, the purpose of this game was for Turing to support 
his view that computers could be more than just calculating machines, and could have a role in all sorts of 
tasks given that how they could accomplish them would be indistinguishable from a human’s completion of 
the task. 



against an algorithm just because it is an algorithm, but it also means that one judges the algorithm 

on its outputs rather than the process by which it arrived at its conclusion (i.e. the contents and 

operation of the algorithm itself). In this context, just as one may deduce what someone is thinking 

based on a response, so one will be able to work out how an algorithm is producing its responses. 

This sameness in status of both participants – as thinking participants – is not just an accepted status 

quo: the aim of the interrogation game is to ask questions that will betray which responses belong to 

which participant. The status of thinking is never just accepted (like the identities of human and 

computer), but are under constant review. In our everyday dealings with algorithms, we will become 

aware of the algorithm’s presence or its operation as a distinct object or process if it does not 

accomplish its task or provides an unexpected result. If one checks the weather via an application on 

their smart phone, and its response is incorrect, one is left to wonder to how it arrived at that result. 

It may be a software error, incorrect data, sudden changes which have not yet been detected by the 

algorithm and so on. Likewise, if we ask a person what the weather is like outside, and they are 

incorrect, we may consider reasons why they got it wrong (of course, we could also just ask them).  

Time and again, our critique of the algorithmic process seems to also apply to humans performing 

the same task, which further reinforces Turing’s aim to offer the same status to each (in this case, 

thinking) when playing the same game. However, we should afford specific attention to the 

algorithm in terms of how it is programmed: a human is not constructed to think or respond in a 

certain way, or more specifically, in a language or system which we can so easily decipher and 

understand (it must have been developed by somebody – singular or multiple). Accessibility to the 

algorithm’s operations and logic allows a user or one who interacts with it to see just how its task is 

accomplished. If we are constantly aware that we are dealing with algorithms in all aspects of 

contemporary life, does that mean that Turing’s interrogation game is redundant? Not so. Even 

though we are aware we may be asking questions to a computer, such as through a web search 

engine, we expect an intelligent and coherent response, and because we recognise it as an 

algorithm, we should be aware of its limitations. The interrogation game does not end when we can 

distinguish the human and the digital, but rather necessitates its continuation: as new data and 

practices emerge, we must interrogate the algorithm to ensure that it does not introduce a ‘digital 

divide’ between an algorithm’s response and that of a human. This is important to avoid installing an 

authenticity to one side or another: either the algorithm’s response can be dismissed as a simulation 

or imitation of a ‘real’ version of a process, but also we must avoid conferring on the algorithm an 

‘objectivity’ or an unquestionable truth that is somehow purged of the subjectivity or bias of human 



thought.27 In attributing a sameness (thinking, or otherwise) to each of the participants, their 

relationship to one another can continue to be reconfigured, their needs assessed and met, and 

their challenges overcome. 

 

5. Conclusion 

In order to answer the question “what is an algorithm?” and to attribute some form of meaning to it, 

there must be certain groups, people or parties to have an interest in the algorithm’s various 

aspects: whether that be its programming, its cultural impact, or simply those who want to check on 

the weather via their smart phones. The algorithm means something different to each of these 

groups, and a unifying definition that ignores the shifting dimensions of their various practices will 

prove to be an insufficient definition. However, as discussed above, the lack of an all-unifying 

definition is not a defeat for the task of acquiring meaning, but a sign that such meaning must 

provide an element of openness: an open space through which one may trace the algorithm through 

the wandering, interconnected and overlapping paths of various disciplines and the complexities 

that their associated practices may entail. 

The algorithm is, first and foremost, a step-by-step process of accomplishing a task: of giving 

something to an algorithm to transform it into something else. This process of transformation, often 

obscured in a ‘black box’ should not be thought of as a mystical process or some form of magic trick 

that we never see,  but an operation that one should – and must – critique if the algorithm is to have 

any meaning. For the software engineers and developers, an algorithm must be constructed so that 

the task is able to be completed. This means that there must be no step in the algorithm which 

contradicts another step, which would cause the algorithm to undertake a calculation that would 

never end, or creating an infinite loop which it cannot break free of. As has been shown above, the 

universal language of the computer means that it can be programmed for an unlimited amount of 

tasks, but this universal language inherently has its limits when it is embedded in the various 

practices it can be programmed for. With this in mind, algorithms created for engaging in complex 

tasks with rapidly changing variables and uncertainty should contain methods for finding ways to 

mitigate the risk of this happening. There can be many ways to accomplish a task, and some will be 

better than others in different contexts. The engineer/developer must consider the use of the 

                                                           
27 To be unquestionable implies that it cannot be interrogated; that there is something non-negotiable beyond 
the rules of Turing’s game. For example, in pre-establishing the identity of the human and the computer in 
such a game, it will also establish the conclusion “thinking belongs to the human, not to the computer”, thus 
locking out the computer from ever gaining the status of thinking. The interrogation game withholds such 
identities dominating the rules of the game, instead letting the participant’s actions speak for themselves. 



algorithm to find creative solutions, and to balance efficiency with versatility: if an algorithm has lots 

of steps to check for a large number of factors, then this will ultimately slow down completion of the 

task, but if the algorithm only has a few easy steps, then it’s quick completion may not take account 

of variables which could drastically affect the outcome. Understanding what an algorithm is in this 

instance means understanding how this step-by-step process proceeds from beginning to end, 

balancing the various needs and complexities that may arise in completing the task. 

However, the meaning of “what is an algorithm?” does not belong solely to those who code and 

program them. Algorithms are used by people with no programming knowledge whatsoever in a 

multitude of everyday tasks; often without realising that they are interacting with an algorithm. An 

algorithm may just be a means to an end to those just wanting to accomplish a task in the quickest, 

efficient, and least disruptive manner possible, and to give the algorithm a meaning and a presence 

in that process will almost certainly detract from that. Nevertheless, it is important to have at least a 

general understanding of what the algorithm must do to accomplish its task: as mentioned in the 

above paragraph, there often exists no single, perfect method to accomplishing a task. Likewise, 

there is no single solution to how to deal with an algorithm. Where some algorithms require consent 

from the user to access their data, this may involve an intrusion on their privacy, but in return allows 

the algorithm to provide a more efficient and personalised service. It is important to a user, who will 

not wish to become too distracted from the task it has set an algorithm, to have the opportunity to 

view and interrogate just how their data or interactions will be used by the algorithm and those who 

employ it. The ever-increasing speed of digital technology and the new frontiers it operates in means 

that regulation and ethical frameworks for how these algorithms are used often lags behind in the 

no-so-fast process of government legislation and corporate codes of conduct. Thus it is often up to 

the users and creators themselves to define and interrogate the limits and meaning of engaging with 

an algorithm. 

It also means something to deal with an algorithm compared to any other type of process, or even a 

human being. If we delegate a task to an algorithm, we are generally relying on it to accomplish its 

task in the most efficient, accurate and (ideally) most ethical way possible. If the algorithmic process 

is obscured inside the black box, or coded in a language we cannot understand, we are at risk of 

reinforcing the idea of the ephemerality of an algorithm, which evaporates after the task is 

completed, the finished object leaving no trace of the preceding process. Imagine viewing a work of 

art and wondering about the process of how it was created: it is easy to attribute the artistic process 

to the work of ‘genius’ or a mystical, divine gift. Turing’s interrogation game aims to halt such 

attributions and identities by providing a framework in which a participant’s work is judged based on 

its responses to commands and questions without first establishing between real and artificial, 



human and computer etc. The significance of Turing’s game is that no such distinction should be 

created unless the participants create it themselves through their diverging responses. Again, there 

is no single or ideal way to play this game: it requires creative solutions to keep this distinction from 

manifesting itself. It is possible that such a distinction establishing itself is unavoidable, but given 

that the algorithms we interact with are constantly learning and evolving, just as we as humans are 

learning and evolving our own thought processes, then the possibility of these distinctions and 

divides materialising can always be stalled and delayed; long enough to fulfil the aim of the game or 

the task to be completed. If we know or suspect an algorithm is involved and participating in a game 

or task, then the interrogation method; the questioning of the participants allows us to determine 

the algorithm’s role and just how it is operating. 

What is an algorithm? To answer this question one must first cast aside – or at least suspend for a 

time – the identity of the functional, calculating computer, and demystify the ephemeral process of 

the algorithm: it is not something inaccessible or fleeting, but rather a tangible, ongoing process that 

we can critique, question, and interact with. Whether user, engineer or developer, the task for 

ourselves is to ask the appropriate questions that shed light on the decisions and choices made to 

accomplish a task; to judge the algorithm’s effectiveness, it’s consideration for the users data, and so 

on. In return, we may invest in the algorithm and entrust it with more tasks, providing them with the 

rich and diverse data it needs to become more useful and efficient. Interacting with the process in 

this way, one should not seek to stop the algorithm in order to treat it as a static object in order to 

find its meaning, as this will again cause the step-by-step process to elude this object, and mystifying 

it once again. Our questioning and critique should take place as the algorithm is active and 

participating in its task or game, where we will find the answer to the question “what is an 

algorithm?” as the algorithm participates, configures, and contributes not only to the completion of 

a task, but how such tasks can be solved and completed in new ways provided by computational 

processes. 

  



 

Bibliography 

Descartes, René. “To Marsenne, 20 November 1629” in The Philosophical Writings of Descartes 

Volume III: The Correspondence, translated by John Cottingham et al. Cambridge: Cambridge 

University Press, 1991: 10-13 

Davis, Martin. The Universal Computer: The Road from Leibniz to Turing. New York/London: W.W. 

Norton & Company, 2000 

Gödel, Kurt. On Formally Undecidable Propositions of Principia Mathematica and Related Systems, 

translated by Brian Meltzer. New York: Dover Publications, 1992. 

Leibniz, G.W. “The Art of Discovery” in Leibniz: Selections, ed. Philip P. Wiener. New York: Charles 

Scribner’s Sons, 1951: 50-58 

______. Explanation of Binary Arithmetic, translated by Lloyd Strickland, accessed 4th April 2019 

http://www.leibniz-translations.com/binary.htm 

Seaver, Nick. “Knowing Algorithms”, 2017, accessed 1st May 2019: 

https://static1.squarespace.com/static/55eb004ee4b0518639d59d9b/t/55ece1bfe4b030b2e8302e1

e/1441587647177/seaverMiT8.pdf 

Turing, Alan. “On Computable Numbers, with an Application to the Entscheidungsproblem” in The 

Essential Turing: Seminal Writings in Computing, Logic, Philosophy, Artificial Intelligence, and 

Artificial Life: Plus The Secrets of Enigma, edited by B. Jack Copeland. Oxford: Oxford University 

Press, 2004: 58-90 

______. “Can Digital Computers Think?” in The Essential Turing: Seminal Writings in Computing, 

Logic, Philosophy, Artificial Intelligence, and Artificial Life: Plus The Secrets of Enigma, edited by B. 

Jack Copeland. Oxford: Oxford University Press, 2004: 477-486 

Whitehead, Albert North, Bertrand Russell. Principia Mathematica: Volume I, 2nd edition. Cambridge: 

University Press, 1968 

http://www.leibniz-translations.com/binary.htm
https://static1.squarespace.com/static/55eb004ee4b0518639d59d9b/t/55ece1bfe4b030b2e8302e1e/1441587647177/seaverMiT8.pdf
https://static1.squarespace.com/static/55eb004ee4b0518639d59d9b/t/55ece1bfe4b030b2e8302e1e/1441587647177/seaverMiT8.pdf

